| iCCSF | Comp | 11tor | Science | _ 1 | Init  | 1 |
|-------|------|-------|---------|-----|-------|---|
| IGCSE | Сошр | utei  | Science | - 1 | UIIIL | T |

| English Name: | Class:                                   |
|---------------|------------------------------------------|
|               | ©2024 Chris Nielsen – www.nielsenedu.com |

## Worksheet: Linear Search

| 1. | Draw a <i>flowchart</i> that represents a <i>linear search</i> algorithm that will find the <u>largest value</u> in |
|----|---------------------------------------------------------------------------------------------------------------------|
|    | an array, then write the <i>pseudocode</i> for the flowchart as a <i>function</i> named maximum.                    |

Inputs: the array (call it a).
Output: the largest value found in th

| • | Output: the largest value found in the array |
|---|----------------------------------------------|
|   |                                              |
|   |                                              |

| iGCSE | Comp   | uter | Science - | – Unit 1 |
|-------|--------|------|-----------|----------|
| TOCOL | COLLIP | acci | OCICIICC  | O IIIC I |

## **Worksheet: Linear Search**

- 2. Draw a *flowchart* that represents a *linear search* algorithm that will find a <u>specific value</u> in an array, then write the *pseudocode* for the flowchart as a *function* named linearSearch.
  - **Inputs**: the array (call it a), and the value to search for (call it value).
  - **Output**: the *index* in the array where the value is found; or a value of -1 if the value is not found in the array.

**Important:** in pseudocode (as well as programming languages), if the flow of the program encounters a RETURN statement, the function will exit from that point and not continue to run any code after that line.